А. Э. АНТОШИН

RNMNX

Карманный справочник

для подготовки к ЕГЭ, ОГЭ и ВПР

УДК 373.5:54 ББК 24.1я721 A72

Антошин, Андрей Эдуардович.

А72 Химия / А. Э. Антошин. — Москва : Эксмо, 2025. — 384 с. — (Карманный справочник для подготовки к ЕГЭ, ОГЭ и ВПР).

ISBN 978-5-04-206089-2

Справочник содержит все темы школькой программы по химии с 8 по 11 класс. Теоретический материал удобно структурирован и представлен понятным языком. Приводится информация по разделам «Основы теоретической химии», «Неорганическая химия», «Органическая химия».

Пособие поможет в подготовке к ЕГЭ, ОГЭ и ВПР, а также контрольным и самостоятельным работам. Благодаря компактной форме его можно всегда брать с собой и повторить материал в любой момент.

> УДК 373.5:54 ББК 24.1я721

© Антошин А.Э., 2025 © Оформление. 000 «Издательство «Эксмо», 2025

СОДЕРЖАНИЕ

1. Основы теоретической химии				
1.1. [Периодический закон			
Į	Д. И. Менделеева	7		
1.2. >	Кимическая связь	8		
1.3. E	Валентность. Степень окисления	12		
1.4. H	Классификация и общие свойства			
(основных классов неорганических			
E	веществ	15		
1.5. F	Растворы	34		
1.6. 3	Электролиты и неэлектролиты	35		
1.7. k	Ионы. Катионы и анионы.			
3	Электролитическая диссоциация			
H	кислот, щелочей и солей	38		
1.8. [Гидролиз солей	42		

Содержание 3

	1.9.	Окислительно-восстановительные			
		реакции и правила их составления	45		
1	.10.	Электролиз	49		
1	.11.	Обменные реакции и правила их составления	53		
1	.12.	Классификация химических	-		
		реакций	57		
2	2. Неорганическая химия				
	2.1.	Элементы группы ІА. Щелочные			
		металлы	66		
	2.2.	Элементы IIA группы.			
		Щелочноземельные металлы	79		
	2.3.	Алюминий	88		
	2.4.	Элементы IV группы главной			
		подгруппы. Углерод. Кремний	95		
	2.5.	Элементы VA группы. Азот.			
		Фосфор 1	11		
4		Содержание			

2.6.	Элементы VI группы главной				
	подгруппы. Халькогены 13	33			
2.7.	Галогены 14	19			
2.8.	Водород. Вода. Пероксид				
	водорода 16	3			
2.9.	Медь 16	39			
2.10.	Серебро 17	76			
2.11.	Цинк 18	32			
2.12.	Хром 18	38			
2.13.	Марганец 19	96			
2.14.	Железо 20)6			
2.15.	Гомологическая связь между				
	классами неорганических				
	веществ 21	17			
3. Органическая химия					
3.1.	Основные понятия и определения 22	28			
	Содержание	5			

3.2.	Типы связей в молекулах органическ	ИХ
	веществ. Гибридизация атомных	
	орбиталей углерода. Радикал.	
	Функциональная группа	231
3.3.	Номенклатура органических	
	веществ	234

3.4. Углеводороды 236

3.5. Кислородсодержащие

1. ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

1.1. Периодический закон Д. И. Менделеева

Формулировка:

Свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением периодического закона является Периодическая система химических элементов.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

Группами называют вертикальные ряды в Периодической системе. В группах элементы

объединены по признаку возможной высшей степени окисления в оксидах. Каждая группа состоит из главной (А) и побочной (В) подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов.

1.2. Химическая связь

Химическая связь — электростатическое взаимодействие между электронами и ядрами, приводящее к образованию молекул. Ее образуют валентные электроны.

У s- и p-элементов валентными являются электроны внешнего слоя.

Длина связи — среднее расстояние между ядрами двух химически связанных между собой атомов. У *d*-элементов валентными являются s-электроны внешнего слоя и *d*-электроны предвнешнего слоя.

Энергия химической связи — количество энергии, необходимое для разрыва химической связи, когда вещество находится в газовой фазе.

Виды химической связи

Ковалентная неполярная связь возникает между одноименными атомами, связующее их электронное облако равномерно распределено между ними. Примеры соединений: H_2 , N_2 , O_2 , F_2 , Cl_2 , Br_2 , I_2 .

Ковалентная полярная связь возникает между двумя разными неметаллами. Образующая ее электронная пара смещается в сторону более электроотрицательного атома, но остается связанной с обоими ядрами. Примеры соединений: HBr, HI, H_2S , N_2O , SO_2 .

Ионной называют предельный случай ковалентной полярной связи, при которой электронная пара полностью переходит от одного атома к другому и связанные частицы превращаются в ионы. Примеры соединений: NaCl, KBr, Na₂O, BaO, CaCl₂.

Металлической называют химическую связь между положительными ионами в кристаллах металлов, которая осуществляется в результате притяжения электронов, свободно перемещающихся по образцу металла. Примеры соединений: Fe, K, Ni, Ca.

Особый вид химической связи — водородная. Она бывает межмолекулярной (между молекулами воды, спиртов и т. д.) и внутримолекулярной (в молекулах белков, бензойной кислоты).

Строго говоря, к соединениям с ионной связью можно отнести лишь соединения, для которых разность в электроотрицательности больше 3, но таких соединений известно очень мало. К ним относят фториды щелочных и щелочноземельных металлов. Условно считают, что ионная связь возникает между атомами элементов, разность электроотрицательности которых составляет величину больше 1,7 по шкале Полинга.

Внутримолекулярная водородная связь возникает, если в молекуле одновременно имеются группы с донорной и акцепторной способностями. Именно внутримолекулярные водородные связи играют основную роль в образовании пептидных цепей, которые определяют строение белка.

Например, в воде водородная связь возникает благодаря электростатическому и донорноакцепторному взаимодействию между атомом водорода и атомом кислорода, который ковалентно не связан с данным атомом водорода. Обозначают водородную связь тремя точками. Энергия водородной связи на порядок (в 10 раз) ниже энергии ковалентной связи!

1.3. Валентность. Степень окисления

Валентность — способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Валентность атома определяется числом его неспаренных электронов в основном или возбужденном состоянии, участвующих в образовании общих электронных пар с электронами других атомов.

Количественной мерой валентности атома элемента считают число атомов водорода или кислорода (данные элементы считаются соответственно одно- и двухвалентными), которые элемент присоединяет, образуя гидрид формулы 3_n0_m.

<u>Пример.</u> Валентность атома водорода равна 1. Следовательно, в соединениях с формулами КН, H_2 S, PH_3 , CH_4 валентности атомов калия, серы, фосфора и углерода равны 1, 2, 3, и 4 соответственно.

Степень окисления — понятие, характеризующее состояние элемента в химическом соединении и его поведение в окислительновосстановительных реакциях.

Степень окисления численно равна формальному заряду, который можно приписать элементу исходя из предположения, что все электроны каждой его связи перешли к более электроотрицательному атому.

Электроотрицательность элементов в периоде увеличивается, а в группе электроотрицательность в общем случае уменьшается с увеличением атомного номера элемента.

Степень окисления обозначают арабской цифрой (со знаком перед цифрой), располо-

женной над символом элемента, например: $Ca^{+2}O^{-2}$, $H_3^{+1}P^{+5}O_4^{-2}$.

При составлении формул соединений, состоящих из двух неметаллов, более электроотрицательный из них всегда ставят правее: PCl₃, NO₂. Из этого правила есть некоторые исторически сложившиеся исключения. на-

Правила определения степени окисления элементов в соединении

пример NH₃, PH₃ и т. д.

- Степень окисления элементов в простых веществах равна нулю.
- 2. Алгебраическая сумма степеней окисления
- атомов в молекуле равна нулю.
- 3. Кислород в соединениях проявляет главным образом степень окисления, равную -2 (во фториде кислорода $0F_2 +2$, в пероксидах металлов типа $M_2O_2 -1$).
- 4. Водород в соединениях проявляет степень окисления +1, за исключением гидридов ак-

тивных металлов, например щелочных или щелочноземельных, в которых степень окисления водорода равна -1.

- 5. У одноатомных ионов степень окисления равна заряду иона, например: $K^* +1$, $Ba^{2^+} +2$, $Br^- -1$, $S^{2^-} 2$ и т. д.
- В соединениях с ковалентной полярной связью степень окисления более электроотрицательного атома имеет знак минус, а менее электроотрицательного — знак плюс.
- 7. В органических соединениях степень окисления водорода равна +1.

1.4. Классификация и общие свойства основных классов неорганических веществ

Вещества делят на простые и сложные.

Простые вещества образованы атомами одного и того же химического элемента (например, H_2 , O_2).